Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 80(1): 235-247, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-EMG-580

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus–induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7–12 m/min, 30–40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome–associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic–lysosome system, the ubiquitin–proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin–proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy. (AU)


Assuntos
Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Atrofia Muscular , Exercício Físico , Metformina , Autofagia , Inibidores de Proteassoma
2.
J. physiol. biochem ; 80(1): 235-247, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-229953

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus–induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7–12 m/min, 30–40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome–associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic–lysosome system, the ubiquitin–proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin–proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy. (AU)


Assuntos
Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Atrofia Muscular , Exercício Físico , Metformina , Autofagia , Inibidores de Proteassoma
3.
J Physiol Biochem ; 80(1): 235-247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112970

RESUMO

Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus-induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7-12 m/min, 30-40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome-associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic-lysosome system, the ubiquitin-proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin-proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Camundongos , Animais , Metformina/uso terapêutico , Metformina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Autofagia , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia
4.
Artigo em Chinês | MEDLINE | ID: mdl-35634669

RESUMO

Objective: To investigate the effects of continuous exercise training (CT) and high-intensity interval exercise training (HIIT) on liver lipid metabolism and the correlation of the level of fibroblast growth factor 21(FGF21) in serum and liver tissues. Methods: Male SD rats were randomly divided into normal diet group (N) and obesity model group (H) after 1 week of adaptive feeding. Rats in the obesity model group were fed with 45% high-fat diet for about 8 weeks, and 20% weight increase compared with normal rats was considered as obesity. The rats were divided into normal diet control group (LC), normal diet HIIT group (LHI), normal diet CT group (LCT), High fat diet-induced obese control group (OC), obese HIIT group (OHI), and obese CT group (OCT) (n=10). Exercised rats were given weight-bearing swimming training intervention for 8 weeks. Blood samples were collected at least 24h after the last exercise intervention to detect the serum levels of inflammatory factors and FGF21. Liver tissue samples were collected to detect the lipid content, lipid metabolic enzyme content and FGF21 expression level. Results: Compared with LC group, the body weight, serum inflammatory factors levels and hepatic triglyceride content were increased significantly (P<0.05). Hepatic triglyceride content was downregulated in LHI group and FGF21 expression level was enhanced in LCT group (P<0.05). Compared with OC group, the body weight and hepatic triglyceride content were decreased significantly (P<0.05), mitochondrial CPT-1ß and ß-HAD enzyme contents in liver were increased significantly (P<0.05) in OHI group, the contents of LPL and FAT/CD36 enzyme in liver and the levels of FGF21 in serum and liver of OCT group were increased significantly (P<0.05). Conclusion: Both exercise modes can reduce the body weight in normal and obese rats, and lipid deposition in the liver of obese rats. HIIT has a more significant effect on alleviating liver lipid deposition in obese rats by upregulating mitochondrial lipid oxidation level in normal and obese rats. CT improves the levels of FGF21 in serum and liver tissues of normal and obese rats, enhances enzyme contents that involved in fatty acids uptake to the liver, which has limited effect on alleviating lipid deposition in liver of obese rats.


Assuntos
Fígado Gorduroso , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Fatores de Crescimento de Fibroblastos , Masculino , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...